VGB Research Project 341: Measurement of Low Mercury Concentrations in Flue Gases of Power Plants

VGB Conference "Chemistry in Power Plants 2013" October 30/31, 2013 in Leipzig, Germany

Dr. Johannes Mayer, E.ON New Build & Technology GmbH, Gelsenkirchen / Germany Dipl.-Ing. Sebastian Hopf, Otto-von-Guericke Universität, Magdeburg / Germany Dr. Frans van Dijen, Laborelec / GDF Suez, Linkebeek / Belgium Dr. Alessio Baldini, Enel Produzione, Florence / Italy Dr. Silvia Gasperetti, Enel Engineering and Research, Pisa / Italy

Determination of low total mercury concentration and mercury species distribution in flue gases from coal-fired power plants by the sorbent trap method – Validation of the Dowex/AC measuring method –

- 1. Measuring Campaign in Oct. 2011 at a hard coal fired PF power plant
- 2. Measuring Campaign in Dec. 2012 at a lignite fired CFB power plant

Participants in the VGB field testing programme:

- E.ON New Build & Technology GmbH
- Otto von Guericke Universität Magdeburg
- Laborelec / GDF Suez
- Enel Engineering and Research

Further participants:

- Plant operators (with their CEMs)
- Environnement SA (with the AMESA M)
- Sick AG

Background

- Public perception for mercury emissions from coal fired power plants is increasing.
- New emission limits in the range of 1 3 µg/m³ are in discussion and already agreed in particular cases.
- The referred lower application limit of the Standard Reference Method (SRM) for mercury emission testing EN 13211 is 1 µg/m³.
- Differentiation between elemental Hg(0) and oxidized Hg(ox) is not possible with EN 13211 but important for development of effective mercury mitigation procedures.
- Alternative methods for mercury measurements at low concentrations and in different species are available but not validated for low concentrations and are not acknowledged by authorities in Europe.

Benefits

- Reliable monitoring of mercury emissions from (new) coal fired power plants in the range of 1 µg/m³ and below to demonstrate compliance with emission limit values.
- Improved acceptance of New Build projects by optimized and reliable emission monitoring.
- Verification of mercury mitigation measures as part of the permit obligations.
- Validation of an alternative measuring method that allows differentiation of mercury oxidation state and thus reduction of costs for legally required baseline and performance measurements for the authorities.

Work Programme

- Field testing of mercury emissions at two different power plants with preferably low mercury emissions.
- Comparison of four different sampling and measuring methods for determination of mercury emissions.
- In addition methods for long-term sampling and continuous mercury emission monitoring have been included.
- Evaluation of the test results according to European standards and validation of alternative adsorptive sampling methods in the lower concentration range.

1. Measuring campaign in Oct. 2011 at a hard coal-fired PF power plant

Methods applied by the participating research institutes:

- 1. European Standard Reference Method EN 13211 (E.ON)
- 2. Dowex-Activated Charcoal Method (OvGU)
- 3. US-EPA Method 30B (Laborelec / GDF Suez)
- 4. PSA Continuous Mercury Emission Monitoring System (Enel E&R)

Additional methods applied by plant operator and equipment manufacturer:

- 5. Sick Mercem (official, calibrated CEM for Hg emissions)
- 6. AMESA M (Environnement SA Deutschland, long-term sampling system)
- 7. Sick Mercem300Z (test installation by Sick, not calibrated)

2. Measuring campaign in Dec. 2012 at a lignite-fired CFB power plant

Methods applied by the participating research institutes:

- 1. European Standard Reference Method EN 13211 (E.ON)
- 2. Dowex-Activated Charcoal Method (OvGU)
- 3. US-EPA Method 30B (Laborelec / GDF Suez)

Additional methods applied by plant operator:

4. Mercury Instruments - SM4 (test installation)

1. Measuring Campaign: Description of the sampling location

Hard coal-fired PF power plant, 510 MW_{el}

- Sampling location: Downstream of the FGD at the emission measuring platform
- Flue gas duct: Horizontal, 7 m diameter, four access points on each half axis (45° out of the vertical) plus 2 bigger horizontal flanges

- Clean gas parameters: 55°C, water saturated, < 5 μg/m³ Hg
- Coal input: Southafrican (0,1 mg/kg Hg; 0,04-0,06 % Cl) and Columbian (~0,05 mg/kg Hg; ~0,009% Cl

(1) European Reference Method EN 13211

Applied by E.ON New Build & Technology

Air quality - Stationary source emissions -Manual method of determination of the concentration of <u>total mercury</u>

 H_2SO_4 / KMnO₄ sampling train

(2) Dowex® / Activated Charcoal Method

Applied by Otto-von-Guerike Universität Magdeburg

Dowex/activated charcoal adsorption unit

Elemental and oxidized, vapour phase **mercury** in flue gas from stationary sources

(3) EPA Method 30B

Applied by Laborelec / GDF Suez

Activated charcoal traps inside the duct

Determination of **total vapor phase mercury** emissions from coal-fired combustion sources using carbon sorbent traps

(4) PSA Online Stack Gas system for Continuous Emission Monitoring (CEM) of Mercury

Continuous monitoring of **elemental and oxidized**, vapour phase **mercury** in flue gas from stationary sources

Applied by Enel Engineering and Research

Dilution unit installed straight to the duct

(5) Sick MERCEM for Continuous Emission Monitoring (CEM) of Mercury

Applied by Plant Operator

Continuous monitoring of **total**, vapour phase **mercury** in flue gas from stationary sources; **approved** by German authorities

Wet chemical reduction of oxidized mercury

(7) AMESA M Automatic Sampler for Mercury using Adsorption Traps Short-term and long-term sampling system for **total mercury** in flue gas from stationary sources; installed for **validation trials**

Applied by Environnement SA Deutschland

(6) Sick MERCEM300Z Continuous Emission Monitoring (CEM) of Mercury

Applied by Sick Maihak Germany

Continuous monitoring of **total**, vapour phase **mercury** in flue gas from stationary sources; installed for **validation trials (QAL1)**

Measurement Schedule

Day	Cont. Measuremt.	Discont. Sampl.	Sick CEMs	AMESA M	
	Enel E&R	E.ON, OvGU,	Operator /	Environnement	
		Laborelec	Provider	SA	
Mon. Oct. 3rd	set-up		measuring		
Tue Oct. 4th	1. series	set-up	measuring		
Wed Oct. 5th	2. series	1. series	measuring		
Thu Oct. 6th	3. series	2. series	measuring	set-up	
Fri Oct. 7th	dismatling,	3. series	measuring	1. series	
	deptarture				
Sat Oct. 8th		dismatling,	measuring		
		deptarture			

Measurement Requirements

- All sampling points / probe tips as close together as possible (preferably in the centre of the duct)
- All samplings and measurements starting and terminating simultaneously
- 6 samplings / measurements per day, each lasting 1 hour
- Each sampling performed as duplicate (with exception of CEMs)
- Measuring campaign resulting in a set of 36 flue gas samples per sampling method and a set of 24 samples per method comparable with the PSA CEM
- 12 flue gas samples to be comparable with the corresponding AMESA M samples

Results of the 1. Measuring Campaign 05. – 07.10.2011

Conclusion from the 1. Measuring Campaign

- The results of all 7 sampling / measuring methods are very close together, especially in consideration of the very low concentration level of about 2 3 μg/m³.
- The results of all 7 methods follow the enforced course of mercury concentration in almost the same way.
- The discontinuous sampling methods incl. automated EPA and AMESA M method are in a mid range close together.
- The calibrated continuous measuring method delivers the lowest values.
- In the row of the continuous emission monitors the new Sick Mercem300Z shows the best analogy with the standard reference method.
- The results of mercury species determination with the Dowex/AC and the PSA method were inconsistent and need further investigation.

2. Measuring Campaign: Description of the sampling location

Lignite-fired CFB power plant, 108 MW_{el}

- **Sampling location:** Downstream of the ESP at the emission measuring platform
- Flue gas duct: Vertical, 4 m diameter, two access points on each half axis

- Clean gas parameters: 160°C, ca. 23 Vol.-% water, < 20 μg/m³ Hg
- Fuel input: Lignite, waste derived fuel, sewage sludge

Results of the 2. Measuring Campaign 11. – 13.12.2012

Comparison of the Methods applied in both Campaigns

VGB Conference "Chemistry in Power Plants 2013", 30 and 31 October 2013 in Leipzig

Requirements for Application of DIN CEN/TS 14793

- Up to 30 pairs of comparative values for each method.
- Outliner test according to Grubbs for each set of comparative values.

Test for Acceptance of Alternative Method

- Repeatability of the alternative method must not be higher than the repeatability of the standard reference method.
- Linear regression must be evaluated ($y = C_1x + C_0$).
- The following conditions must be fulfilled:

Condition:	Condition:	Condition:
R ≥ 0,97	$1-Sr(Zq)/Zq \le C1 \le 1+Sr(Zq)/Zq$	$C0 \leq Sr(Zq)$

Standard Reference Method EN 13211: $Zq = 10 \mu g/m^3$, Sr(Zq) = 1,2

Evaluation of EN 13211 and Dowex/AC Methods acc.

OvGU	OvGU Alternativ Method					to DIN CEN/15 14/93							
		Comparative No. of Mea Measurements surements		- Averages		Variances							
Test Nr.	1			surements	s								
		X_{r1}	X_{I2}	n_{i}	$\overline{X_t}$	\overline{X}^{2}	$S^2_t(X)$	$X_i - Z_i$	$(X_{i1} - \overline{X}_{i})^2$	$\left(X_{cl} - \overline{X}\right)$	$\left(X_{i2} - \overline{X}\right)$	$\left(X_{i}-\overline{X}\right)^{2}$	$\left(X_{B} - \overline{X}\right)^{2}$
Test4		2,76	2,59	2	2,68	7,16	0,01445	7,35625	0,007225	-2,77	-2,94	7,67	8,64
Test6				-									5,29
Test7		Number of Samples for Evaluation acc. CEN/TS 1/702										7,07	
Test8		Number of Samples for Evaluation acc. CEN/15 14/93									5,33		
Test9													4,58
Test10		 36 samplings with each method in total 									5,29		
Test11		ou sumplings with cach method in total.									4,12		
Test12												5,61	
Test13		 30 sets of repeat samplings evaluable 									13,54		
Test14											14,51		
Test15		E acts of compliants aliminated by Chubba Test									13,54		
Test16		 5 sets of samplings eliminated by Grubbs Test 									12,60		
Test17													12,60
Test18		• 2	5 10	rified	sets c	of ren	eat sa	mnleg	s rema	inina	for		12,25
Test19		25 venneu sets ur repeat samples remaining fur									68,40		
Test20			02	ch m	othod								180,38
Test21			ъa		ethou								37,46
Test22													55,81
Test23		2,84	2,73	2	2,79	7,76	0,00605	5,645562	0,003025	-2,69	-2,80	7,23	7,84
Test24		2,25	2,06	2	2,16	4,64	0,01805	6,0890895	0,009025	-3,28	-3,47	10,76	12,04
Test25		6,43	5,96	2	6,20	38,38	0,11045	41,220347	0,055225	0,90	0,43	0,81	0,19
Test26		8,47	8,21	2	8,34	69,56	0,0338	/1,146914	0,0169	2,94	2,68	8,65	7,18
Test27		7,76	8,20	2	7,98	63,68	0,0968	65,322345	0,0484	2,23	2,67	4,97	7,13
Test28		9,77	9,37	2	9,57	91,58	0,08	99,754782	0,04	4,24	3,84	17,98	14,75
Test30		1,/4	1,61	2	1,68	2,81	0,00845	3,9701497	0,004225	-3,79	-3,92	14,36	15,36
					$\overline{\overline{X}}$	$SSD(X_b)$	$S_2(\overline{X})$	$SPD(\overline{BiZ})$	$S_r^2(X)$	R	C1	$S_r^2(X)$	
					5,35	536,0	22,33	545,73	0,03	0,996028	0,978187	-0,063747	

Results of Method Comparison acc. to DIN CEN/TS 14793

Summary and Conclusions

- All applied sampling and measuring methods showed pretty well comparable results (as long as applied properly).
- All adsorption methods (Dowex/AC, EPA 30b, Amesa M) didn't show systematic deviations from the Standard Reference Method (SRM) EN 13211.
- The continuously measuring systems (CEMs) showed partly higher deviations from the SRM.
- The Dowex/AC method could be successfully validated according to CEN/TS 14793 as an alternative method to the SRM in the concentration range of 1 to 20 µg/Nm³.
- A validation of the differentiation between Hg(0) and Hg(ox) with the methods Dowex/AC and PSA was not possible with the available data.

Thanks to the teams for a good job!

